

Bringing Astronomers & Computer Scientists Together:

New Methods for Calculating Galaxy Photometric Redshifts in the Sloan Digital Sky Survey

Michael Way (NASA/Goddard Institute for Space Studies)
Paul Gazis, Jeffrey Scargle (NASA/Ames, Space Sciences Division)
Ashok Srivastava (NASA/Ames Intelligent Systems Division)
Les Foster + Students (San Jose State University)

Rama Nemani (NASA/Atheso Earth Science Division)

Outline

- Astro-CS Collaborations
- Geography
- What good are galaxy redshifts
- Why are spectra "expensive" & How to get them
- What are Photometric Redshifts & How to get them
- The Sloan Digital Sky Survey: Description
- Number Density in the Sloan: Photometry vs Spec
- Photometric Estimation Methods
- Linear Regression & Non-Linear Regression
- Gaussian Process Regression
- Results, The Future, Conclusions

Collaborations Everywhere?

A few well known Astro-CS collaborations:

- International Virtual Observatory Alliance (IVOA)
- Astronomical Data Analysis Software & Systems
- SDSS + Microsoft Research
 - Casjobs: Alex Szalay (JHU) & Jim Gray (MS)
- LSST = Google + Bill Gates + NSF + ...
- Penn State Center for Astrostatistics(Summer School)
- Institute for Pure and Applied Mathematics [UCLA]
- (Ames ROSES workshops, Google+Ames seminars, & many others...)

The Necessities of Geography?

Silicon Valley Stanford/SLAC **UC-Santa Cruz/Lick** San Jose State San Francisco State

The Non-Necessities of Geography

Moscow State University - USSR

Who Needs Redshifts?

- Since Hubble we have used redshifts as a proxy for distance in the Universe: distance=v_r/H
- They also allow one to constrain formation scenarios for Large Scale Structure in 3-D Cosmological Models

Those expensive spectra

BUT...

- Spectra for redshifts are expensive to obtain For Example: The first CFA catalog?
 2401 spectra from the merged Zwicky-Nilson catalog took 5 years to obtain: 1977 - 1982
- Even now measuring a spectrum of sufficient S/N for redshift measurements requires more time than equivalent quality photometry

Practical Considerations: LSS via Spec-z?

Spectroscopic photons are costly (time/resources):

First: The galaxy must be found in an imaging survey

LSS via Spec-z?

Second: Spectra must be measured with a costly specialized instrument

Those expensive spectra

So...

• It would be desirable (if possible) to obtain the redshifts from multi-band photometry alone

• Baum (1962): was the first to attempt "Photometric Redshifts" using 9 broad bands

Lets take a look at Photometric Redshifts

Photometric Redshifts: A **rough** estimate of the redshift of a galaxy without having to measure a spectrum.

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$$
 $z_{\text{photo}} = z(C, m)$

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$$
 $z_{\text{photo}} = z(C,m)$

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}} \qquad z_{\text{photo}} = z(C,m)$$
$$z \sim 0.06 (18000 \text{ km/s})$$

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$$
 $z_{\text{photo}} = z(C,m)$

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$$
 $z_{\text{photo}} = z(C,m)$

$$Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$$
 $z_{\text{photo}} = z(C,m)$

COMBO-17 (ESO 2.2m WFI)

Stretching Photon Use

Photometric vs Spectroscopic Redshifts

- BUT: Accuracy is low:
 - As much as 2 orders of magnitude lower than typical redshift estimates for broad-band photometry

• YET: There is still science to be done

Photometric Redshift Science?

A couple of applications:

- Cosmology (e.g. Dark Energy Survey, LSST)
 - Weak Lensing/Cosmic Shear (arXiv:0712.1562v1)
 - Large Scale Structure detection in wide field multiband imaging surveys (2MASS, SDSS)
- Deep pencil beam imaging surveys (HDF, HUDF, DEEP2, GROTH Strip, etc)

Photo-z for wide fields

The 3 most prominent wide field surveys used today:

- The Palomar Obs Sky Survey [POSS] (1950-57, 1970s, 1980s)
 - The only full sky optical imaging survey as of today (1m telescope)
 - Was done in two band-passes using glass photographic plates
- The Two Micron All Sky Survey [2MASS] 1997-2001
 - The largest Near IR full sky survey of the sky (1.3 meter telescope)
- The Sloan Digital Sky Survey [SDSS] 2000-now
 - Multi-band CCD imaging of 1/3 of the sky
 - Includes follow-up spectroscopy to shallow depth
- Lets take a closer look at the SDSS and why it is the optimal survey for wide-field Photometric Redshifts today...

The Sloan Digital Sky Survey

- >9500 deg² in 5 bands (u g r i z) to r~22.5, (37GB/hr)
- Images=10TB, MS-sql DB=4TB
- Spectra= 1.6×10^6 , 8×10^5 galaxies (depth r~18)
- 230GB spectra+data products
- 287 million unique objects

Example of a SDSS Query

```
Select p.ObjID, p.ra, p.dec
p.dered u, p.dered g, p.dered r, p.dered i, p.dered z,
p.petroR50_r, p.petroR90_r, p.fracDev_r, p.q_r,
p.Err u, p.Err g, p.Err r, p.Err i, p.Err z,
p.petroR50Err r, p.petroR90Err r, p.qErr r,
s.z, s.zErr, s.zConf
FROM SpecObjAll s, PhotoObjAll p
WHERE s.specobjid=p.specobjid and s.zConf>0.95
and (p.primtarget & 0x00000040 > 0)
and ( ((flags & 0x8)=0) and ((flags & 0x2)=0)
and ((flags & 0x40000)=0) and ((flags & 0x10)=0)
and ((flags & 0x1000)=0) and ((flags & 0x20000)=0))
```


The Sloan Digital Sky Survey

• Obviously one obtains many more galaxies per unit area with photometry versus spectroscopy for a given exposure

• Lets look at the number density of galaxies in the SDSS for photometric versus spectroscopic results

SDSS Data Release 3 (DR3)

SDSS DR3 Photometry+Spectra

SDSS Magnitude Histogram r <=22

Photo-z methods

Now lets look at some Photometric Redshift methods.

For ~ 30 years astronomers have used two methods for redshifts on the cheap $\rightarrow \rightarrow$

Photo-z methods

1.) Spectral Energy Distribution (SED) Fitting:

- model based approach
- uses redshifts derived from spectra of artificial galaxies (e.g. Bruzual & Charlot)

2.) Training-Set methods:

- empirical approach
- uses *spectroscopic* redshifts from a sub-sample of galaxies with the same band-pass filters

Photo-z The Empirical Approach

Training Set Methods need a sub-sample of Galaxies:

- of known spectroscopic redshift
- with a comparable range of magnitudes
 (u g r i z) to our Photometric survey objects
- These will be our "Training Samples"

"Training Set" Methods

We will need <u>many</u> training samples (10,000s), why?

- Not all Galaxies are the same: e.g.
 Spiral, Elliptical, Star Burst, Active Galactic Nuclei ...
- They will have many different redshifts

SDSS Image of Hickson 88

Albany 08

Redshifts measured in small SDSS field

"Training Set" Methods

Galaxy Photometric Redshift Prediction History

- Linear Regression was first tried in the 1960s
- Quadratic & Cubic Regression (1970s)
- Polynomial Regression (1980s)
- Neural Networks (1990s)
- Kd Trees & Bayesian Classification Approaches (1990s)
- Support Vector Machines & GP Regression (2000s)

Lets review linear regression quickly before we move on

Linear Regression

The start of Regression: A History in brief!

- Earliest form was the method of least squares
- First described by Gauss in 1794 (he was 18). Used it in 1801 to predict the orbit of the asteroid Ceres
- Gauss **finally** published it in 1809 in his work on celestial mechanics: "Theoria Motus Coporum Coelestium in sectionibus conicis solem ambientium"
- Independently derived by Legendre 1805 & Adrian 1808

Linear Regression

Linear Regression Reminder for our case:

• Models the relationship between a dependent variable y and independent variables X_i , i=1,2,...n

$$y = b0 + \sum_{i=1}^{n} b_{i} X_{n} + e$$

- y = galaxy spectroscopic redshifts
- X = 5 broad band pass filter measurements for those galaxies with a measured spectroscopic redshift (y)

Multiparametric Fitting Methods

Linear regression in the SDSS:

$$\sum_{j=0}^{ngal} (sz_j) = A + Bu_j + Cg_j + Dr_j + Ei_j + Fz_j + e$$

u g r i z = 5 SDSS filters \rightarrow

Solve A,B,C,D,E, $F \Rightarrow Photo-z$

Linear and Quadratic Fits — Problems?

Over fitting issues
 (small N) – hard to
 quantify.

 No estimates of individual photo-z errors.

Non-Linear Fitting methods

Non-linear fitting methods in use today:

- Quadratic and Cubic Fitting
- Back propagation Neural Networks: (NN)
 (e.g. ANNz by Collister & Lahav 2004)
- Support Vector Machines (Wadadekar '05)
- Bayesian approaches (astro-ph/0607302), etc.

Non-Linear Fitting methods

Our Collaborative Approach to the SDSS Virtual Sensors:

• Neural Network using Ensemble Modeling (EM)

- Gaussian Process Regression (GP)
 - GPs with reduced rank matrix inversion estimators

Neural Network diagram

Neural Networks

Advantages of NN over simpler methods:

- They can avoid over fitting of the data
- It is possible to get error estimates on the predicted redshifts
- They are scalable to large datasets: 10^5 - 10^6

Neural Networks

Disadvantages of NN:

- Often not used properly rely upon 1 model run. [Use Ensemble Modeling]
- Complaints of their being "Black Boxes"
- Large CPU time requirements when bootstrapping
- Underestimate galaxy photo-z errors

Gaussian Process Regression fitting

Gaussian Process Regression ⇔ Kernel Methods

Kernel Methods have replaced Neural Networks in the Machine Learning literature

WHY?: given a large # of hidden units => GP (Neal 1996).

$$h_{n} > 100$$

$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$$

Gaussian Process Regression

Gaussian Process Regression has a long history:

- Time Series Analysis in Astronomy (1880)
- Military trajectory predictions (1940)
- Geostatistics (1963)

See Mackay (1998) for more information.

Kernel Methods - Gaussian Process Regression

GP regression builds a linear model in a very high dimensional *parameter space* ("feature space" → Hilbert space).

• One can map the data using a function F(x) [kernel] into this high (or infinite) dimensional *parameter space* where one can perform linear operations.

The value of kernels

Original Data without Kernel

Data in original space: highly complex decision boundaries.

Mapped Data using Kernel

Data in high dimensional feature space after mapping through F(x) can yield simple decision boundaries.

Albany 08

F(x)

Map

GP Regression (Kernels)

GP Advantages:

Small input data training samples
 (good for higher redshifts) yet low errors

• Over fitting is eliminated by use of proper priors

Realistic estimation of individual redshift errors

GP Regression

GP Disadvantages:

- Possibly large CPU time requirements
 - The Kernel (Covariance Matrix) **can** be large: $K=(\lambda^2I+XX^T)^2$ if X=5x180,000 (our case) then K is a matrix 180,000 x 180,000 and we have:

$$y^* = K^* (\lambda^2 I + K)^{-1} y$$

- Need to invert this large K matrix O(N³) operation
- Kernel Selection is ambiguous (Bayesian like?)
- Black-box like?

GP Regression How-To

Using GPs Part I: Pick a transfer/covariance function

Matern Class Fcn

Radial Basis Fcn

$$k(r) = \frac{2^{l-v}}{\Gamma(v)} \left(\frac{\sqrt{2vr}}{l}\right)^{v} J_{v} \left(\frac{\sqrt{2vr}}{l}\right) \qquad v \to \infty \qquad k(r) = \exp\left(\frac{r^{2}}{2l^{2}}\right)$$

Rational Quadratic Polynomial

Neural Nets

$$k_{RQ}(r) = 1 + \left(\frac{r^2}{2\alpha l^2}\right)^{-\alpha} \qquad k(x, x') = \left(\sigma_o^2 + x^T \sum_{p} x'\right)^{p} \qquad k_{NN}(x, x') = \frac{2}{\pi} \sin^{-1} \left(\frac{2x^T \Sigma x'}{\sqrt{(1 + 2x^T \Sigma x)(1 + 2x'^T \Sigma x')}}\right)$$

GP Regression How-to

Using GPs Part II: That matrix inversion...

With our SDSS (DR3) spectroscopic sample (180,000 galaxies) the matrix size is 180,000 x 180,000

- Need a supercomputer with a LOT of ram and cpu time?
- One can take a random sample of ~1000s galaxies & invert that while bootstrapping n times from full sample (Paper I)
- However, some *low-rank matrix approximations* work well (Cholesky Decomposition, Subset of Regressors, Projected Process Approx, etc.)

GP Regression (Results)

Results from the SDSS (DR3)

- Compared linear, quadratic, Neural Networks and GPs on the SDSS dataset (only 1000 trainings galaxies for the GPs)
- With 1000 samples GPs performed well especially given their (small) training sample size compared to the other methods
- With *low-rank matrix approximations* GPs performed better than all other methods

Results: Comparing Methods

Results: Comparing Methods

Results: Other authors

Method Name	σ_{rms}	Dataset ¹	$Inputs^2$	Source
CWW	0.0666	SDSS-EDR	ugriz	Csabai et al. (2003)
Bruzual-Charlot	0.0552	SDSS-EDR	ugriz	Csabai et al. (2003)
ClassX	0.0340	SDSS-DR2	ugriz	Suchkov et al. (2005)
Polynomial	0.0318	SDSS-EDR	ugriz	Csabai et al. (2003)
Support Vector Machine	0.0270	SDSS-DR2	ugriz	Wadadekar (2005)
Kd-tree	0.0254	SDSS-EDR	ugriz	Csabai et al. (2003)
Support Vector Machine	0.0230	SDSS-DR2	ugriz+r50+r90	Wadadekar (2005)
Artificial Neural Network	0.0229	SDSS-DR1	ugriz	Collister & Lahav (2004)

Immediate Future Directions

 Use Bruzual-Charlot galaxy population synthesis models to create training-sets for r >18 SDSS photometry

• Use redshifts from DEEP2, VVDS, etc to create training sets for r > 18 photometry

 Also use Bruzual-Charlot models for higher-z studies (e.g. Groth Strip, etc)

Conclusions

Astronomy needs good Photometric Redshifts now (SDSS, HDF) and in the future (LSST)

GPs are a competitive way to do regression to get them

GPs avoid over-fitting issues

GPs give robust estimates of individual Photo-z errors

They work well even with small subsamples (high-z)

And ...

Conclusions

Astronomers & Comp Scientists can and will continue to work together to solve interesting problems!

Astronomy Data in Context

Astronomy the photon poor field?

Mission/Project	Data Rate	Total Collected
WMAP (now) [DSN]	0.7Mb/s (16min/d)	30GB/year
2MASS 1m(1998-01)	1Mb/s (~8hr/d)	4TB/year/Telescope
SDSS (Spectra)	12 spectra/min(4000/d)	300GB/year 20000/yr
MRO (Now) [DSN]	0.5-4Mb/s (10hr/d)	800GB/year
MODIS: Terra/EOS	3-10Mb/s (5Mb/s)	19TB/year
SDSS 2.5m(Imaging)	82Mb/s	100TB/year
LSST 8.4m (2014?)	3GB/s	7PT/year
LHC (2008)	40TB/s/inst	5PT/experimt/year

